The future of quantum gravity

Steve Carlip U.C. Davis

> Seven Pines Symposium XIX May 2015

What is the future of quantum gravity?

Short answer: nobody knows...

But one can guess some themes

- Locality and nonlocality
- Holography
- Perhaps deep connections with quantum physics (entanglement, etc.)
- Perhaps dimensional reduction
- Perhaps some form of "emergence" (but not a simple one!)

Locality

Torre (1993):

"...there can be no observables for the vacuum gravitational field (in a closed universe) built as spatial integrals of local functions of Cauchy data and their derivatives."

But standard QFT relies on local observables — Many of the problems of quantum gravity trace back to this

Related issues:

- diffeomorphism invariance vs. gauge transformations
- "everything couples to gravity"

Holography

- We know some observables in asymptotically flat spacetimes
 (ADM energy, momentum, ...)
- Quasilocal observables associated with surfaces
 (Brown-York energy, momentum, . . .)
- AdS/CFT: many more in asymptotically AdS spacetimes
 (Marolf: almost all perturbative AdS observables are boundary observables)
- Black hole area law for entropy...
- ⇒ Observables connected to *surfaces*
- How does one define relevant surfaces?
- Are these enough observables?
- Do they fit together consistently?

General boundary formalism in QM (Oeckl)

Locality and entanglement

Ryu, Takayanagi, Hubeny, Rangamani:

To compute entanglement entropy between two regions A and B divided by a curve C on (say) a sphere S^n :

- 1. treat sphere as n-dimensional boundary of an (n+1)-dimensional time slice Σ of AdS^{n+2}
- 2. find minimal surface ${\mathcal S}$ in ${\sf AdS}^{n+2}$ whose boundary is ${\mathcal C}$

3. then
$$S=rac{\mathcal{A_S}}{4\hbar G_{n+2}}$$

Really true (Lewkowycz and Maldacena)

To label a curve C on Σ :

- 1. consider a collection of minimal surfaces tangent to $oldsymbol{C}$
- 2. determine the corresponding boundaries and their entanglement entropies
- 3. reverse: determine the point from the entanglement entropies

drawing from Czech and Lamprou, arXiv:1409.4473

Points may be defined as limits of curves

Under what circumstances does a state of a field theory at the boundary determine entanglement entropies that (approximately) locate points?

Black hole information loss problems

Old problem: collapse a pure state to form a black hole, let it evaporate What happens to unitarity?

Newer emphasis (AMPS) connects to locality –

- QFT vacuum ⇒ A and B are entangled
- Pure final state ⇒ B and C are entangled
- Monogamy ⇒ entanglement must be transferred
- But A and C are never in causal contact

Probably a unitary boundary description in AdS/CFT (with "precursors"?) But how does one recover (approximate) spacetime locality?

Spontaneous dimensional reduction

Indications from a number of different approaches to quantum gravity that spacetime near Planck scale is effectively two-dimensional

- Causal dynamical triangulations: spectral dimension
- Asymptotic safety: anomalous dimension near UV fixed point
- High temperature string theory
- Strong coupling approximation of Wheeler-DeWitt equation
- Loop quantum gravity: area spectrum
- High temperature dispersion relations in noncommutative geometry
- Vacuum fluctuations near Planck scale \Rightarrow Kasner/AVTD behavior (?)

Is quantum gravity a two-dimensional conformal field theory?

Emergent gravity?

- 1. Yes, obviously
- 2. But no, not in any simple way . . .

If space or spacetime are already present:

- background must decouple very strongly for Lorentz invariance
- principle of equivalence/universal coupling is not natural (though less problematic if Lorentz invariant)
- need same universal *self*-coupling
- emergent diffeomorphism invariance must be very nearly exact (Weinberg-Witten)

If spacetime is discrete:

Lorentz invariance ⇒ radical nonlocality

If spacetime itself emerges:

OK, how? That's where we started...

Possible models

- AdS/CFT (and entanglement?)
- Causal sets
- Spin foams/group quantum field theory

But all still must confront same problem:

How to you reconstruct approximate locality/local QFT?